Economic Evaluation of Digital Health Interventions in Oncology: A Targeted Literature Review

Vatsal Chhaya*, Shaurya Deep Bajwa, Jignasa Sathwara, Kapil Khambholja

Catalyst Clinical Research, Wilmington, NC, USA

Presented at ISPOR Europe 2024: November 17-20, 2024; Barcelona, Spain

INTRODUCTION

- Chimeric antigen receptor (CAR) T-cell therapy is a novel treatment for blood cancers that uses engineered T-cells to target tumor markers, such as CD19 and BCMA.
- Cost-effectiveness analysis (CEA) ensures efficient and equitable resource allocation in oncology, where treatment costs are high and outcomes vary.¹
- Conducting CEA for digital health interventions (DHIs) in oncology is challenging due to diverse patient profiles, varying cancer stages, different treatment regimens, and uncertain treatment outcomes.^{2,3}
- Oncology treatments are expensive, and economic evaluations like quality-adjusted life years (QALYs) and incremental costeffectiveness ratios (ICERs) help assess the financial impact of DHIs,³ which can improve outcomes and reduce hospital stays.¹
- Evidence supports the cost-effectiveness of DHIs, such as telemedicine and mobile health applications,² though study heterogeneity complicates comparisons,³ thereby resulting in the lack of unequivocal evidence.
- Synthesizing evidence from various studies identifies trends, research gaps,² and supports decision-making for DHI implementation in oncology.²

OBJECTIVE

To synthesize existing evidence on the CEA of DHIs in oncology.

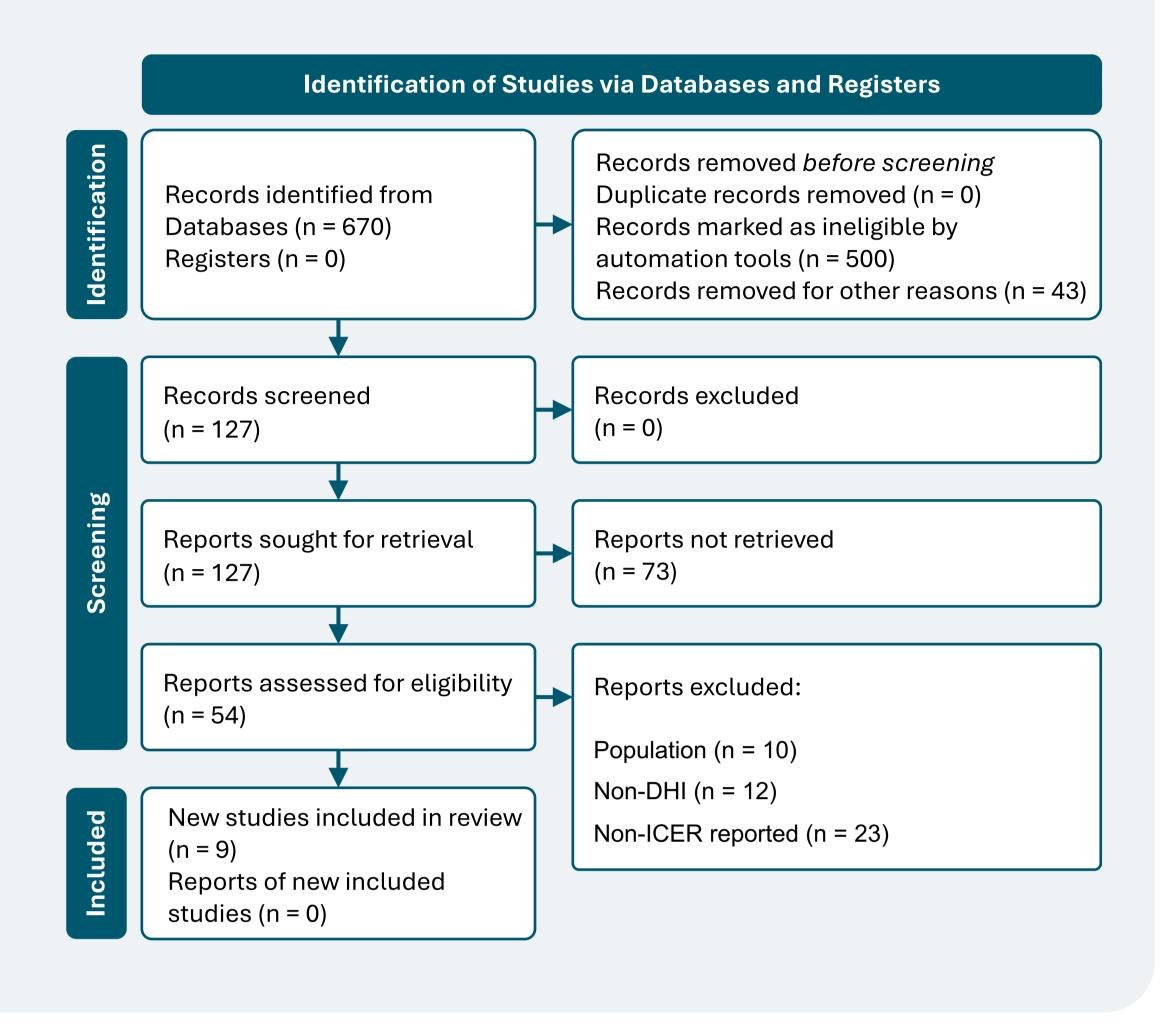
MATERIAL & METHODS

Database Search: PubMed

Study Publication Period: 2019 to 2024

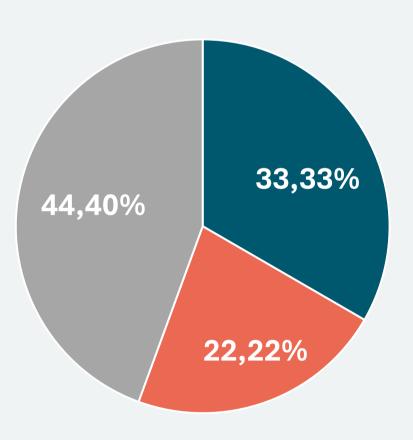
Keywords used: digital AND cancer AND ("cost effectiveness" OR CEA OR cost-utility analysis [CUA]).

Inclusion Criteria	Exclusion Criteria	
Randomized controlled trials (RCTs), observational studies, systematic reviews, meta-analyses.	Non-digital health interventions (non-DHIs).	
Studies that report CEA or CUA with ICER values.	Studies involving non-cancer populations.	
	Studies without reported ICER values.	


Data Extraction Elements:

- Demographics of study populations.
- Model characteristics (CEA and CUA frameworks).
- ICER values.
- Willingness-to-pay (WTP) thresholds.
- Key findings of the CEA and CUA analyses.

Reporting Guidelines: The methodology was compliant with the CHEERS-2022 checklist for reporting economic evaluations.


RESULTS

- A total of 670 records were retrieved from the structured search.
- After the first-pass screening of selected articles based on their relevance (Ti/Ab), 127 articles underwent eligibility-based screening.
- After second-pass screening of shortlisted articles, 22 articles were selected for the final analysis.

Report Characteristics

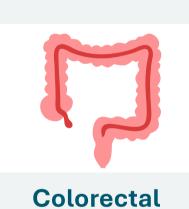
Study Type (n=9 reports)



■ HEE alongside RCT ■ SLR ■ CEA

and behavioral interventions, respectively.

Of 9 reports, 7 and 2 reports focused on screening


Affected Organs

Record Characteristics

 Of 7 individual CEA reports (excluding 2 SLRs), 3 were Markov model-based and remaining were non-model based real-time CEAs.

Cost-effectiveness Findings from Included Studies:

Patient Population	ICER/ICER Range (cost per QALY)	Willingness-to-pay Threshold	Perspective	Time Horizon
Behr, et al. 2023	US\$10,000 to US\$90,000	Not reported	Not reported	35 years
Song, et al. 2022	AU\$21,147 (PSMA PET/CT vs CT+WBBS), AU\$36,231 (PSMA PET/CT	AU\$50,000 per QALY gained	Australian healthcare	Not reported
	vs CT alone)			
Mujcic, Ajla; Blankers, Matthijs; Boon, Brigitte; Verdonck-de Leeuw, et al. 2022	US\$ -1,158 (95% CI -1609 to -781)	Not reported	Societal	1 year
Mujcic, Ajla; Blankers, Matthijs; Boon, Brigitte; Berman et al. 2022	US\$52,067 (95% CI US\$32,515 to US \$81,346) per reduced pack year	Not reported	Not reported	1 year
Rezapour, et al. 2022	Direct in-bore MRI-guided biopsy: €323 per QALY gained	Not reported	Not reported	Not reported
Chung, Wei-Shiuan et al. 2024	US\$5,971.57/QALYs	US\$33,004 (Gross Domestic Product of Taiwan in 2021) per QALY	Not reported	30 years
Cressman, et al. 2021	US\$17,149 per QALY	US\$100,000 per QALY	Government payer	Not reported
Machleid, et al. 2022	£25,536/QALY	£30,000/QALY	National Health Service England	3 months
Behr, et al. 2023	US\$10,000 to US\$90,000	Not reported	Not reported	35 years
Champion, et al. 2023	\$14,462 in DVD group, \$10,638 in DVD/PN group	Not reported	Not reported	Not reported

Sensitivity analyses were conducted in 4 out of 7 studies (57.1%) with intervention costs and effectiveness being key drivers.

STRENGTHS & LIMITATIONS

Strengths

- Inclusion of diverse study types (HEEs, SLRs, CEAs) offers a broad view on cost-effectiveness across interventions.
- Focus on screening and behavioral interventions adds practical value to public health insights.
- Variety in models (Markov and real-time) accommodates different intervention complexities.
- Regional ICER comparisons reveal costeffectiveness differences tailored to local healthcare systems.
- Region-specific WTP thresholds improve relevance for local decision-making.
- Sensitivity analysis in >50% of studies identify key ICER drivers, strengthening findings.

Limitations

- Lack of explicit WTP in some US studies limits cross-regional comparability.
- Missing or short time horizons may impact the long-term applicability of results.
- Differences in model approaches complicate direct CEA comparisons.
- Limited representation from lower-income regions may reduce global generalizability.

DISCUSSION

- ✓ Study types included 3 HEEs with RCTs, 2 SLRs, and 3 CEAs, focusing mostly on screening interventions.
- ✓ Among CEAs, 3 used Markov models and 4 were nonmodel, real-time CEAs, showing varied approaches.
- ✓ ICERs varied by region: US (\$10,000–\$90,000), Australia (AU\$21,147-\$36,231), Taiwan (US\$5,972), UK (£25,536), Canada (\$17,149).
- ✓ WTP thresholds reflected economic settings: AU\$50,000 (Australia), £30,000 (UK), US\$33,004 GDP-based (Taiwan), while some US studies lacked WTP.
- ✓ Sensitivity analyses in 57.1% of studies indicated intervention cost and effectiveness as main ICER drivers.
- ✓ Regional CEA variances reflect local healthcare costs, economic conditions, and resource allocations.
- ✓ WTP alignment with regional economic standards highlights the need for context-based CEA adaptation.
- ✓ Findings suggest that region-specific models are essential for accurate, multinational CEA comparisons.

CONCLUSIONS

- The cost-effectiveness of DHIs in cancer screening supports their integration into oncology care, enabling more accessible and potentially cost-saving screening solutions.
- There is a critical need for standardized CEAs across varied cancer populations and additional studies on DHIs for therapeutic purposes in oncology to guide evidence-informed policy and broaden DHI application in cancer care.

REFERENCES

1. Wyse R, Smith S, Zucca A, Fakes K, Mansfield E, Johnston SA, Robinson S, Oldmeadow C, Reeves P, Carey ML, Norton G. Effectiveness and cost-effectiveness of a digital health intervention to support patients with colorectal cancer prepare for and recover from surgery: study protocol of the RecoverEsupport randomised controlled trial. BMJ open. 2023 Mar 1;13(3):e067150.

2. Gentili A, Failla G, Melnyk A, Puleo V, Tanna GL, Ricciardi W, Cascini F. The cost-effectiveness of digital health interventions: a systematic review of the literature. Frontiers in Public Health. 2022 Aug 11;10:787135.

3. Gomes M, Murray E, Raftery J. Economic evaluation of digital health interventions: methodological issues and recommendations for practice. Pharmacoeconomics. 2022 Apr;40(4):367-78.

Acknowledgment: We thank Reddikumar Reddy for his peer review and inputs for the development of this poster.

CONTACT INFORMATION

Kapil Khambholja, Ph.D. Executive Director, Head of Medical Writing and Product Strategy Lead Catalyst Clinical Research Phone: +91-77029 49998 | Email: kapil.khambholja@catalystcr.com www.CatalystCR.com

